A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

AutoAt: A deep autoencoder-based classification model for supervised authorship attribution

Anamaria Briciu, Gabriela Czibula, Mihaiela Lupea

Department of Computer Science, Babeş-Bolyai University Cluj-Napoca, Romania

Outline

autoencoderbased classification model for supervised authorship attribution

AutoAt: A deep

A. Briciu, G. Czibula and M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

1 Introduction

2 Background Related work Autoencoders

3 Methodology

4 Results and discussion Dataset Results

Outline

based classification model for supervised authorship attribution

AutoAt: A deep

autoencoder-

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

1 Introduction

2 Background

Related work Autoencoders

3 Methodology

4 Results and discussion Dataset Results

Authorship attribution

deep autoencoderbased classification model for supervised authorship attribution

AutoAt. A

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Definition: Authorship attribution (AA) is the task of determining the likely author of a given text

Importance of domain: wide range of applications in:

- literature and history
- education
- social network analysis
- software engineering and cybersecurity

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Proposed study

Exploit the ability of AEs to encode meaningful data patterns: we propose a **model based on an ensemble of deep autoencoders for authorship attribution**.

Dataset: poetic texts (language: Romanian) **Representation**: document embeddings

Contributions

- general classifier (proposed methodology easily applicable for texts from many domains)
- distributed representation of poetic texts & model architecture (ensemble of AEs)
- evaluation on a data set of poems authored by Romanian poets

Research questions

deep autoencoderbased classification model for supervised authorship attribution

AutoAt. A

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

RQ1 How to introduce a multi-class classification model based on an ensemble of deep autoencoders to supervisedly identify the author of a given text, based on the encoded structural and conceptual relationships between the documents written by the same author?

RQ2 What is the performance of the approach introduced for answering RQ1 for identifying the authors of Romanian poetry and how does it compare to the performance of similar classification models?

RQ3 What is the relevance of the document embedding representation of the poetic texts in discriminating among different authors?

Outline

deep autoencoderbased classification model for supervised authorship attribution

AutoAt: A

A. Briciu, G. Czibula and M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

1 Introduction

2 Background Related work Autoencoders

3 Methodology

4 Results and discussion Dataset Results

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background

Related work

Methodology

Results and discussion Dataset Results

Conclusions

The authorship attribution task

- **Poetry**: [GC20] (Language: Spanish; 5 poets; features: character n-grams), [AMM17] (Language: Arabic; 73 poets; features: characters, word and sentence length, meter, rhyme, first word in sentence; algorithms: SVM, Naive Bayes), [GL19] (Language: English; 5 poets; representation: bag-of-words; algorithm: SVM, Naive Bayes)
- Romanian texts: [DPD08] (2 Romanian novelists; features: frequency rankings of function words; algorithm: hierarchical clustering), [DN2] (pastiche detection, extension of [DPD08])

Methodology

authorship attribution A. Briciu, G. Czibula and

AutoAt: A deep

autoencoderbased classification model for supervised

M. Lupea

Introduction

Background

Related work

Methodology

Results and discussion Dataset Results

- using doc2vec ([LM14]): [MHJ⁺17] (social media texts; task: author profiling), [GAPDSP18] (cross-topic authorship attribution)
- using autoencoders: [STASH19] (task: authorship verification; domain: cybercrime; texts: IRC messages; deep AE as one-class classifier), [MY07] (AE-based one-class classification model for document retrieval task)

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Autoencoders (AE)

- deep learning models used in medical data analysis, image analysis, bioinformatics and other fields
- self-supervised learning technique

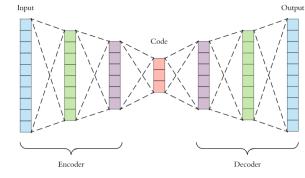


Figure: Autoencoder (AE) model¹

¹https://towardsdatascience.com/

applied-deep-learning-part-3-autoencoders-1c083af4d798

Outline

AutoAt: A deep autoencoderbased classification model for supervised authorship attribution

A. Briciu, G. Czibula and M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

1 Introduction

2 Background Related work

3 Methodology

4 Results and discussion Dataset Results

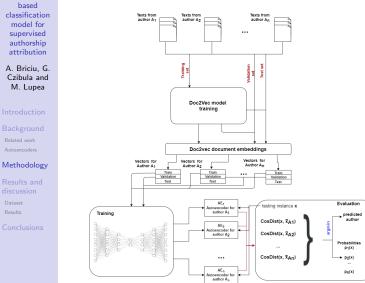
A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results


Conclusions

Formalization of the AA problem

Formalization as a multi-class classification problem.

- set of authors $\mathcal{A} = \{A_1, A_2, \dots A_n\}$
- set of documents (texts) $T = \{T_1, T_2, \dots, T_r\}$
- GOAL: approximate a target function f : T → A that maps documents from T to a certain class/author a ∈ A.

AutoAt

AutoAt: A deep

autoencoder-

Figure: Overview of AutoAt.

The AutoAt model

autoencoderbased classification model for supervised authorship attribution

AutoAt: A deep

- A. Briciu, G.
 Czibula and
 M. Lupea
- Introduction
- Background Related work Autoencoders
- Methodology
- Results and discussion Dataset Results
- Conclusions

- the AutoAt classifier consists of n autoencoders AE₁, AE₂,..., AE_n, the autoencoder AE_i corresponding to the author A_i (∀1 ≤ i ≤ n).
- *AE_i* will be self-supervisedly trained on the documents (texts) from T authored by the author *A_i*.

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Data preprocessing & representation

Data preprocessing

Tokenization Lemmatization of word tokens

Data representation

document embeddings obtained through the doc2vec model

Training (I)

A distinct autoencoder AE_i for each author A_i is trained.

Train-validation-test split

For each A_i ($\forall 1 \leq i \leq n$), of D_i :

- 70% will be used for *training*
- 20% will be used for validation
- 10% will be used for *testing*

Loss function

 $L(\tilde{x}, x) = \frac{1}{m} \sum_{j=1}^{m} (\tilde{x}_j - x_j)^2$

x represents the *m*-dimensional input

 \tilde{x} represents the model's *m*-dimensional output

AutoAt: A deep autoencoderbased classification model for supervised authorship attribution

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Training (II)

AE architectures

- for doc2vec vectors of size 100: input_layer + 16-8-4-2-4-8-16
- for doc2vec vectors of size 150 and 300: input_layer + 128-32-16-8-4-2-4-8-16-32-128

Model details

- hidden layers use ReLU activation function
- encoding layer uses linear activation
- network trained using stochastic gradient descent + Adam optimizer
- mini-batch perspective (batch_size = 4)
- early stopping criterion loss convergence on validation set is monitored (min_delta = 0.005)

AutoAt: A deep autoencoderbased classification model for supervised authorship attribution

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

,

Testing & evaluation: Classification (I)

For testing 10% from each data set D_i ($\forall 1 \leq i \leq n$) was used.

Classification

For test instance *d*:

- AutoAt searches for the autoencoder that minimizes the "distance" between d and \tilde{d} (the instance reconstructed by the autoencoder).
- "distance" between 2 documents d₁ and d₂ defined as the cosine distance between them (where cos(d₁, d₂) represents the cosine similarity between d₁ and d₂, scaled to [0,1])

 $CosDist(d_1, d_2) = 1 - cos(d_1, d_2)$

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Testing & evaluation: Classification (II)

- testing instance d
- *p_i(d)* represents the probability that the input instance *d* belongs to class *A_i*
- CosDist(d, d̃_{A_i}) is the cosine distance between the instance d and its reconstruction d̃_{A_i}, through the autoencoder A_i

$$p_i(d) = rac{1 - CosDist(d, ilde{d}_{A_i})}{n - \sum_{j=1}^n CosDist(d, ilde{d}_{A_j})}$$

A. Briciu, G. Czibula and M. Lupea

Background Related work Autoencoders

Methodology

Results an discussion Dataset Results

Conclusions

Testing & evaluation: Evaluation

$$Precision = \frac{\sum_{i=1}^{n} (w_i \cdot Prec_i)}{\sum_{i=1}^{n} w_i}$$
$$Recall = \frac{\sum_{i=1}^{n} (w_i \cdot Recall_i)}{\sum_{i=1}^{n} w_i}$$

$$F\text{-score} = \frac{\sum_{i=1}^{n} (w_i \cdot F - s\text{core}_i)}{\sum_{i=1}^{n} w_i}$$
$$w_i = \text{cardinality of } D_i.$$

n

Outline

AutoAt: A deep autoencoderbased classification model for supervised authorship attribution

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion

Results

Conclusions

1 Introduction

2 Background

Related work Autoencoders

3 Methodology

4 Results and discussion Dataset Results

A. Briciu, G. Czibula and M. Lupea N

N

Introduction

Background Related work Autoencoders

Methodology

Results and discussion

Dataset

Conclusions

Dataset description

	Authors									
	Alexandru	George	George	lon	Mihai	Octavian	Vasile	Ştefan O.		
	Macedonski	Coșbuc	Topîrceanu	Minulescu	Eminescu	Goga	Alecsandri	losif		
ID	A_1	A2	A3	A4	A_5	A ₆	A7	A ₈		
lo. poems	190	212	113	159	366	181	186	164		
lo. tokens	39 403	124 809	31 525	35 380	182 270	37 761	72 025	30 870		

Table: Description of data set

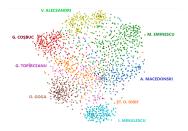


Figure: t-SNE [vdMH08] visualization of the data instances.

Results (I)

A. Briciu, G. Czibula and M. Lupea

AutoAt: A deep

autoencoderbased classification model for supervised authorship

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

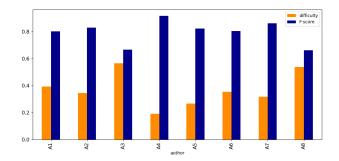
Conclusions

Number of	Performance	Authors							Overall		
features (m)	measure	A_1	A ₂	A ₃	A4	A ₅	A ₆	A ₇	A ₈	Overall	
	Prec	0.85	0.83	0.58	0.89	0.92	0.73	0.84	0.67	0.81 ± 0.017	
100	Recall	0.72	0.84	0.64	0.95	0.73	0.89	0.90	0.67	0.79 ± 0.017	
	F-score	0.77	0.83	0.67	0.92	0.82	0.81	0.86	0.66	0.79 ± 0.018	
150	Prec	0.88	0.85	0.63	0.89	0.93	0.73	0.82	0.68	0.82 ± 0.019	
	Recall	0.74	0.82	0.73	0.95	0.74	0.81	0.86	0.66	0.8 ± 0.019	
	F-score	0.80	0.83	0.68	0.92	0.82	0.81	0.86	0.66	0.81 ± 0.02	
	Prec	0.82	0.83	0.62	0.91	0.98	0.68	0.79	0.73	0.82 ± 0.015	
300	Recall	0.75	0.85	0.70	0.95	0.67	0.90	0.94	0.66	0.8 ± 0.014	
	F-score	0.78	0.84	0.66	0.93	0.79	0.77	0.85	0.68	0.79 ± 0.014	

 Table:
 Experimental results.
 A 95%
 CI is used for the overall performance.

Results (II)

A. Briciu, G.
 Czibula and
 M. Lupea


Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Figure: Correlation between the *F*-score values and the *difficulties* computed for each class/author.

Results (III)

AutoAt: A deep autoencoderbased classification model for supervised authorship attribution

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Number of	Classifier									
features (m)	AutoAt	SVC	MLP	LR	GNB	kNN	DT			
150	0.81 ± 0.02	0.83 ± 0.012	0.81 ± 0.017	0.78 ± 0.019	0.52 ± 0.027	0.41 ± 0.022	0.3 ± 0.024			

Table: Comparison between *AutoAt* and classifiers from the literature in terms of *F*-score. 95% confidence intervals are used for the results.

Outline

AutoAt: A deep autoencoderbased classification model for supervised authorship attribution

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

1 Introduction

2 Background Related work

Autoencoders

3 Methodology

4 Results and discussion Dataset Results

Conclusions

AutoAt: A deep autoencoderbased classification model for supervised authorship attribution

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

- *AutoAt* classifier successfully solves the authorship attribution task for Romanian poetry
- document embeddings are appropriate representations that capture characteristics of authors (future work: combine doc2vec features with features specific to poetry)
- *AutoAt* is a general multi-class classifier, **future work**: investigate performance of *AutoAt* in other domains (e.g. source code AA)

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Bibliography

A. Ahmed, R. Mohamed, and B Mostafa. Machine learning for Authorship Attribution in Arabic poetry.

International Journal of Future Computer and Communication, 6(2):42–46, 2017.

L.P. Dinu, V. Niculae, and O. Sulea. Pastiche detection based on stopword rankings. Exposing impersonators of a Romanian writer.

In Proceedings of EACL 2012, Workshop on Computational Approaches to Deception Detection, pages 72–77, 2012.

 L.P. Dinu, M. Popescu, and A. Dinu.
 Authorship Identification of Romanian texts with controversial paternity.
 In *Proceedings of LREC 2008*, pages 3392–3397, 2008.

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

H. Gómez-Adorno, JP. Posadas-Durán, G. Sidorov, and D. Pinto.

Document embeddings learned on various types of n-grams for cross-topic Authorship Attribution.

Computing, 100:741-756, 2018.

R. Guzman-Cabrera.

Author Attribution of Spanish poems using n-grams and the web as corpus.

Journal of Intelligent & Fuzzy Systems, 39(2):2391–2396, 2020.

C. Gallagher and Y. Li.

Text categorization for Authorship Attribution in English Poetry.

Intelligent Computing, 858:249-261, 2019.

Q. Le and T. Mikolov.

Distributed representations of sentences and documents.

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 2014, volume 32, pages 1188–1196, 2014.

I. Markov, Gómez-Adorno H., Posadas-Durán JP., Sidorov G., and Gelbukh A.

Author Profiling with Doc2vec neural network-based document embeddings.

Advances in Soft Computing. MICAI 2016, Lecture Notes in Computer Science, 10062:117–131, 2017.

L. Manevitz and M. Yousef.

One-class document classification via neural networks. *Neurocomputing*, 70(7-9):1466–1481, 2007.

S. Shao, C. Tunc, A. Al-Shawi, and S. Hariri. One-class Classification with Deep Autoencoder Neural Networks for Author Verification in Internet Relay Chat. In Proceedings of 16th IEEE/ACS International Conference on Computer Systems and Applications, pages 1–8, 2019.

Laurens van der Maaten and Geoffrey Hinton.

A. Briciu, G.
 Czibula and
 M. Lupea

Introduction

Background Related work Autoencoders

Methodology

Results and discussion Dataset Results

Conclusions

Visualizing Data using t-SNE.

Journal of Machine Learning Research, 9(86):2579–2605, 2008.